Phys. Rev. D 92, 052008 (2015)
Afach S, Ayres N J, Baker C A, Ban G, Bison G, Bodek K, Fertl M, Franke B, Geltenbort P, Green K, Griffith W C, van der Grinten M, Grujic Z D, Harris P G, Heil W, Helaine V, Iaydjiev P, Ivanov S N, Kasprzak M, Kermaidic Y, Kirch K, Koch H C, Komposch S, Kozela A, Krempel J, Lauss B, Lefort T, Lemiere Y, Musgrave M, Naviliat-Cuncic O, Pendlebury J M, Piegsa F M, Pignol G, Plonka-Spehr C, Prashanth P N, Quemener G, Rawlik M, Rebreyend D, Ries D, Roccia S, Rozpedzik D, Schmidt-Wellenburg P, Severijns N, Shiers D, Thorne J A, Weis A, Wursten E, Zejma J, Zenner J, Zsigmond G, et al.
Download
http://dx.doi.org/10.1103/PhysRevD.92.052008
Abstract
We compare the expected effects of so-called gravitationally enhanced depolarization of ultracold neutrons to measurements carried out in a spin-precession chamber exposed to a variety of vertical magnetic-field gradients. In particular, we have investigated the dependence upon these field gradients of spin-depolarization rates and also of shifts in the measured neutron Larmor precession frequency. We find excellent qualitative agreement, with gravitationally enhanced depolarization accounting for several previously unexplained features in the data.